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RADIATIVE ENERGY TRANSFER THROUGH NON-GRAY 
GAS LAYERS OF SMALL OPTICAL THICKNESS* 
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Aeronutronic, a Division of Philco Corporation Newport Beach, California 

(Received 5 March 1965 and in revisedform 28 July 1966) 

Ah&act--A theoretical investigation of the energy transfer in a non-gray medium bounded by two flat 
surfaces is conducted. The theoretical model employs a spectral and temperature dependent absorption 
coefftcient instead of the classical gray gas assumption. The study includes the effects of surface emissivities, 
and transient conditions. The analysis is carried out under the restriction that the optical depth, rrr is less 
than one. Expressions for both the temperature distribution and heat flux are presented. The results 

demonstrate the inadequacies of the gray gas model. 

NOMENCLATURE 

spectral absorption coefficient ; 
Planck’s function 

ki, .(lnk,, ,), mean absorption coefficient group 
[equation (14)] ; 

k “9 spectral portion of absorption 
2hv3 

Bv(T) = c’[exp (hv/k-T) - l] ’ 
thermal heat capacity ; 
equation (6) ; 
blackbody emissive power aT4 ; 
function defined following equa- 
tion (15); 
dimensionless function 
F = n4[g, - (UT; - crT;)]/ 

5[4hdE)3 BK] ; 
function defined following equa- 
tion (10); 
Planck’s constant ; 
intensity of radiation ; 
Boltzmann’s constant; 
thermal conductivity ; 
Planckmeanabsorptioncoetlicient 

7~ 7 B,(K) k,dv 

k&II = O 
aT,4 ’ 

mean absorption coefficient [equa- 
tion (13)]; 

coefficient, a, = /l(T) k, ; _ 
1, distance between surfaces; 

$ 
energy flux ; 

6 

radiosity ; 
absolute temperature; 

T,, first approximation for tempera- 
ture ; 

t, time ; 

Y, coordinate normal to flat surfaces. 
Greek symbols 

Y, ,Euler--Masheroni constant 
(y = 05772 . . .) ; 

BP temperature dependence of ab- 
sorption coefficient, a, = p(T) k, ; 

6, surface emissivity ; 

CL, direction cosine, p = cos 8; 

PT density of gas ; 

7, opacity, r = 1 a, dy ; 
0 

total opacity, r0 = i a, dy. 
0 

Subscripts 

1, lower surface ; 
* The work described in this paper was supported by 2, 

The Advanced Research Projects Agency under Contract 
upper surface ; 

No. SD-136. v, frequency ; 

7 Research Scientist, Applied Research Laboratories, @ gray medium ; 
Fluid Mechanics Department. P9 Planck mean coefficient ; 
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m, mean absorption coefhcient ; 

4, mean absorption coefficient ; 

r, radiation ; 

C, conduction. 

INTRODUCITON 

THIS paper is concerned with the analytical pre- 
diction of heat-transfer rates when the radiation 
field can be considered as one dimensional and 
the opacity is between zero and one. The analysis 
considers radiation dominant energy’ transfer 
and includes the effects of a spectral and tem- 
perature dependent absorption coefficient, sur- 
face emissivities, and transient conditions. To 
date, little analytical work has been done which 
considers these effects for this range of optical 
depths. However, a number of numerical cal- 
culations have been performed for steady-state 
situations which include conduction and surface 
emissivity effects. Summaries of many of these 
investigations have been compiled by Hottel [ 11, 
Viskanta [2] and Cess [3]. Since these reviews 
were made, numerous publications on the 
subject of one dimensional radiative energy 
transfer have appeared in the literature. The 
papers of Goulard [4], Heaslet and Warming [S] 
and Grief [12] provide references to most of 
these. 

The purpose of this article is to derive ex- 
pressions, for the temperature and heat flux, 
which include an absorption coefficient that 
varies with both temperature and frequency. 
The value of such an investigation is that it 
yields considerable insight into the limitations 
of a gray gas analysis which cannot be obtained 
from numerical computations. In addition it 
answers the question of whether a gray gas 
analysis can be adapted to a real gas by substi- 
tuting an appropriate Planck mean absorption 
coefficient. The classical geometry considered 
is that of two parallel flat surfaces, infinite in 
extent, which are separated a distance 1 (Fig. 1). 
The surface located at y = 0 has a temperature 
TI and that at y = 1 a temperature T,. For the 
purpose of providing bounds we will assume 
T2 > Tl. The medium between the bounding 

surfaces is allowed to absorb and emit radiation 
and the surfaces are permitted to have emissivi- 
ties different from one. For this investigation it 
is assumed that the absorbing medium can 
be described by an absorption coefficient of the 
form a, = B(T) k, and that the opacity r,, ,, = 

i a,dy, satisfies the condition z,, ,, < 1. The real 

iart of the refractive index is assumed to be one 
throughout the analysis. For one portion of the 
investigation the plate temperature Tl is allowed 

FIG. 1. Diagram showing relationship of radiation transport 
path, s, to normal coordinate y. 

to vary with time. This is an effect which, to 
the author’s knowledge, has not been investi- 
gated for problems of this type.* 

The analysis proceeds by first writing the 
equations describing the radiation transport 
between the two plates. Next, the solution for the 
temperature in the steady-state radiation only 
case is developed by a perturbation procedure. 
In the course of the development new mean 
absorption coefficients arise which demonstrate 
that employing a simple Planck mean is in- 
adequate for describing the temperature distri- 
bution. The temperature distribution is then 
employed to determine the energy transfer rate. 

Following the analysis of the steady-state 
radiation case a discussion of transient radia- 
tion energy-transfer is undertaken. The results 
are less general than for the steady-state case, 
because of the more complicated nature of the 
equations. 

MATHEMATICAL FORMULATION 

For the problems considered it is assumed that 

l A recent publication by Lick [14] examines transient 
radiation transport in a semi-infinite medium for small 
temperature gradients. 
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the medium is in local thermodynamic equili- 
brium and therefore the local temperature along 
with the physical properties of the medium 
completely determine the energy transfer. Since 
numerous derivations of the equations de- 
scribing one dimensional radiative energy trans- 
fer in a bounded medium are available [bll], 
development is omitted and the results are taken 
directly from these articles. The equation of 
transfer for the radiation intensity between the 
plates is : 

p$ = a,[B,(T) - Z,]. (1) 

where ~1 = cos 8 as shown in Fig. 1. By intro- 
ducing the variable 

z, = j a, dy 
0 

this equation is transformed into : 

pz = B,(T) - I,. (2) 

For simplicity the kequency subscript will be 
omitted on z, with the understanding that z 
is always frequency dependent. 

If I, satisfies the boundary conditions 
I, = Z,(O) at y = 0 and I, = Z,(I) at y = 1 then 
the radiative flux between y = 0 and y = 1 can 
be obtained by solving equation (2). The steps 
involved in this are given in [ 11) and the result 
is found to be: 

- = 2; CR,,,E&) - R,,.E&o - r) 
4, 
72 0 

+ j B,E,(z - t) dt - rs” B,E,(t - z) dt] dv. (3) 
0 r 

In this expression 2aR,,, and 2zR,,, are 
radiosities of the surface and are defined by 
equations : 

2nR 1.v = {MU&) + 2(1 - ~1) [RUE&O) 

+ 1 &E,(t) dt]} 271 

2zR 2,v = {&2&W + 31 - ~2) CR,, J&o) 

+ p.E,(ro - t) dt]} 27~ 

(4) 

(5) 

In the event that conduction, convection and 
transient effects are negligible, equation (7) 
describing the energy-transfer in the gas becomes 
aq,/ay = 0 which, by employing equation (3), 
may be written as 

$C- R,, ,E,(r) - R,,.E,(zo - 2) + 2W’-) - 

d B,E,(z - t) dt - {B,E,(t - z)] k, dv = 0. 

In the radiosities we have assumed that the 

the 
the 

emissivity is frequency independent and that the 
surfaces reflect diffusely. The function E,(t) 
appearing in equations (3), (4) and (5) is defined 
as: 

E,(t) = i pnp2 exp (-t/p) dp. 
0 

(6) 

The equation describing the temperature distri- 
bution between the plates, provided there is no 
flow, is the classical expression : 

a kaT =,,.g+dq,, ( > ay ay ay (7) 

where - aq,/ay is the energy source term pro- 
duced in the medium by the radiation field. 
The heat flux to the surface y = 0 is given by 
the expression : 

- B,E,(t)dt dv. (8) 

6 1 
Our objective now will be to solve equation (7) 

analytically when coupled with equations (4), 
(5) and (3) for various conditions on the para- 
meters of the problem. Again we note that it is 
assumed that the absorption coeffkient a, 
can be described by an equation of the form 
a, = /3(T) k,. In this expression the function fl 
accounts for the temperature dependence and k, 
for the spectral variations. The opacity z. will 
be required to satisfy the condition 7. < 1 at all 
frequencies. 

SOLUTIONS FOR VARIOUS CONDITIONS 

1. Pure radiation 

(9) 



658 THOMAS D. TAYLOR 

If we now expand equations (4), (5) and (9) 
for small z0 we find 

a, co 

; B,(T) k, dv = 
(2 - &2)&l 

e2g s 
&(T,)kdb 

0 

+ (2 - ")" 1 (T) k dv”+ O(z 
e2g s 

Y 2 ” lnr ) 0 0 (10) 

0 

where g = [l - (1 - er) (1 - s2)]. 
Equation (10) is an implicit equation for the 

temperature T provided one knows the spectral 
distribution function, k,. This can be solved in a 
straightforward manner, since all the terms on 
the right-hand side are known and one only has 
to choose a value of Twhich when employed in 
evaluating B,(T) will yield an equality. 

Assuming now that the solution has been 
determined it is of interest to write equation (10) 
in terms of Planck means for comparison with a 
gray gas analysis. For this purpose we will 
denote the temperature T which satisfies equa- 
tion (10) as To. Recalling the definition of a 
Planck mean to be: 

k,, i = n: i B,(Ti) k, dV/aTf 
0 

equation (10) can be written as : 

CTT;: 
__ = 

k, 1(2 - ~2) wT: 

e2 2k,, oge2 

+ 
k, 2(2 - ~1) ~2aTf 

2k,, Oge2 

+ O(z, In ro). (11) 

This result shows that three different Planck 
means are required to determine the temperature 
in a non-gray medium. A gray gas-analysis 
would require that k, 1 = k, t = kp, o which 
is true only if Tl = T2 or k, is frequency inde- 
pendent. Note also that the temperature de- 
pendence, /l(T) of the absorption coefficient 
did not enter into the evaluation of the tempera- 
ture. 

It is of interest to take a simple example and 
determine the magnitude of error which would 
exist between the temperature predicted by 

equation (11) and that by a gray gas analysis. 
Let us assume that k, has the simple spectral 
form : 

k,=lforO<v<v,; 

k, = 0 for v > vo. 

If we also assume that hv,/kT is always small we 
can show that : 

Inserting this result into equation (11) and 
setting s1 = s2 = 1 yields: 

T = T + Tz 
0- 2 ’ 

while a gray gas analysis predicts that [3] : 

To = 
T’: + T; a 

[ 1 2 

Figure 2 compares these two results for various 
values of the ratio (TJT,). We see that indeed a 

kN 0.: 

ho 

- 
“‘3 

2. Comparison temperatures predicted gray and 
analysis. 

significant can exist the gray 
analysis and spectral analysis. 

can now the analysis the next 
order term r. by the 
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temperature dependence of the opacity with the 
first order solution, T,. We then find that : 

-r = j BG) k dy = BVo) ky. 

This step proiides a convenient simplification 
which will permit us to continue the analysis 
without extreme difficulty. 

In completing the analysis the expressions 
become extremely cumbersome if we maintain 
emissivities different from one. Although the 
analysis has been carried out without this 

restriction, results are given here only for e1 = 
s2 = 1. The radiosities with the emi~ivities set 
equal to one become: 

R l,v = &(TI); 

R z,v = &(T,). 

Using these radiosities and following a straight- 
forward successive approximation expansion 
we arrive at an expression for T which, when 
written in terms of mean coefficients has the 
form : 

a, 

n2 
e;, 

I 
4(T) k, dv 

2aT4k 
= - = i {aT:k, 1 f C%, 2 f KCJ y[r - 1 + In @To) y)]< 

e2 
b 

+ KG y[oT%,f, 1 In k, 1 - oT%i, o In k,, ol 
- ~(~)~ - Ol[r - 1 + In ~t~)t~ - r)l CC&i, 2 - ETCH, ol 
+ BO’W - Y) CCikf, 2 In k, 2 - C$i, o In k, ol> 

6 + o(rz In zo). (12) 

The y which appears in this expression arises from the asymptotic expansions of the functions 
defined by equation (6). 

In equation (12) new mean absorption coefficients appear which to the author’s knowledge 
have not been computed. These are defined by the equations : 

ka,i = x 7 B,,(PlJ k,2 dv,‘oT:; (13) 
0 

k~, i In k, i = 7~ [ B,(ZJ kz in k, dv/tre. (14) 

Equation (12) shows that in order to describe the temperature of a non-gray gas to terms of order 
($J In ro) nine different mean absorption coefficients are required. 

Next let us examine the heat flux to the surface y = 0 to determine how sensitive this result will 
be to spectral absorption. Since conduction is assumed absent the heat flux is given by the expression : 

q, = 27r 

Due to the fact that the heat llux is generally the most useful quantity the results presented will 
include emissivities. Upon introducing the expressions for R,,, and R,,, and carrying out the 
expansion the resulting expression for q,. becomes : 

f2r, w2W: - CT;) + C(z + f) 4 &2kp, 2 aTz _ C(4 + $) ~2 - 41 El&, i oT; 

e2 w I 9 cl 

KG) 
- t + O(Zf In Q). (IS) 

e2 
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where:f= 4(1 - sl)(l - &J/g. 

This result shows the interesting fact that a gray gas assumption will predict the heat transfer in 
the optically thin limit [9], but fails for higher order corrections. We find that the three Planck 
means required to predict To to of order z,, In z,, are the only ones required to obtain the heat flux 
to of order ~0” In zO. 

In the limit of s1 = Ed = 1 we find, to of order zg In T,,, that : 

q, = (oT’: - aT;) + (oT:k, 2 - aT:k, 1) B(T,) 1. 

This result provides us with a convenient result for comparing with a gray gas analysis. If we use 
the same spectral distribution for k, that was used to compare T, we find that our heat flux 
expression reduces to : 

qr = (aT’: - aT4 0 hv, 3 5KG) 1 
2) + (aT, - oT,) E n4 . 

Using a Planck mean based on the first order temperature 

of gray medium analysis we can write the gray gas heat flux given by Cess [3] in the form: 

4 r,g = (oT’: - CT;) + (aT: - UT;) 3 58(T ) 
-+‘. 

For a simple comparison let us take p(T) = constant so that we can write : 

F = (1 - TJT,), and 

F 

B 

= 2’, L-1 - (T,PJ41 
Cl + (WW41*’ 

where F = x’[q, - (crT; - aT;)]/a 2 ’ 
( > 

5/3IT,. 

These two expressions are compared on Fig. 3. We see that the gray gas analysis can under predict 
the heat transfer considerably. If we included a variable j?(T) then this comparison may become 
better or worse depending on the functional form of the temperature dependence. 

2. Radiation with unsteady wall temperatures 
Consider next the situation of a time varying temperature at the surface y = 0. In this case the 

equation describing the temperature field in the medium is : 

co 

/x,$2/3 R R R,, 

S[ ++? 
-2B,(Tj k,dv+$kg)+O(qlnT,>. (16) 

0 

The initial and boundary conditions which will be imposed are : 

T= T,fort=Oandally; T = Tl at y = 0, T = Tz at y = 1 for t > 0. 

This equation has two characteristic response times, one for the conduction and the other for the 
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radiation transport. If we examine these we find the characteristic time for conduction near the 
wall y = 0 will be given by: 

r, = pc,y2T,IkL 

and near the wall. y = I, 

t, = pc,(l - y)’ T,/kT,. 

The radiation transport time is given by : 

t 
t, = w,T211ke2. 

If we require now that t, be greater than t, we can neglect conduction effects in the energy equation 
provided of course the actual time t remains less than t,. Assuming now that t, > t, we can write : 

-=_ - 2B,(T] k,dv + 0 (frOln,,>. 

0 

A first integral of this equation is : 

-2&(T) k,dvdt +0 1 
0 0 

Now if we employ successive approximations we obtain the result that : 

(17) 

+O(T,~r,lnr,) +Ok2($]. (18) 

This expression gives the temperature distribu- 
tion in the medium for small times provided 
t, > t, > t. Since we assumed the gas to be 
optically thin to a first approximation, and 
neglected conduction the temperature of the gas 
is predicted to vary uniformly between the 
plates with time and to have a discontinuity at 
y = 0 and y = 1. The predicted temperature 
distribution will be accurate except close to the 
walls where t, begins to approach t, or equiva- 
lently when the distance from the wall becomes 
less than y = [kT2/(Bkv)e>. When this occurs 
the conduction terms will begin to dominate the 
energy transport with the result that the tem- 

FIG. 3. Comparison of heat flux terms for gray and non-gray perature discontinuities predicted by equation 
analysis. (18) will be smoothed into a continuous tem- 
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perature distribution. This same phenomenon 
occurs in steady radiation transport problems 
when conduction is small compared to radiation 
as pointed out by Cess [3] and Lick [13]. 
Before heat transfer to the walls can be calculated 
the conduction term must be included since the 
heat flux is a function of both position and time 
near the walls. In this paper we will not attempt 
to include conduction effects. 

SUMMARY 

The principal results of this paper are given in 
equations (11),.(12), (15) and (18). Equation (11) 
shows the important result that for an optically 
thin gas (z,, # 1) the temperature for a radiation 
dominated energy transfer is characterized by 
three different Planck mean coefficients. This 
result demonstrates the limitations of a gray gas 
analysis since such an analysis predicts that the 
temperature is independent of the absorption 
coefficient. Equation (12) extends the solution 
for the temperature, given to first order by 
equation (1 l), to a higher order in z,,. It is found 
that a new group of mean absorption coefficients 
must be introduced to describe the temperature 
distribution. These new means point strongly to 
the inappropriateness of using a gray gas as- 
sumption to compute the temperature distribu- 
tion in radiation dominated flow. They also 
point out that one cannot simply substitute 
Planck means in a gray gas analysis and expect 
to -obtain good accuracy. 

Equation (15) is an expression for the heat 
flux in a radiation dominated energy transfer 
problem. It shotis that for r0 -+ 0 a gray gas 
assumption is appropriate for calculating heat 
transfer. It also shows however that if terms of 
order z0 are included then three different Planck 
means are required to determine the heat transfer 
and hence the gray gas assumption becomes 
inappropriate. 

Equation (18) gives the transient temperature 
distribution between two plates for small times 
subject to the initial and boundary’conditions of 
equation (13). This is for an optically thin gas in 
which radiation dominates the energy transfer. 

It is important to note that this expression fails 
very near the walls because conduction becomes 
dominant. 

In applying the results of this paper it is 
important for the user to stay within the bounds 
of. the assumptions. The four principal restric- 
tions of the analysis are (1) 2, < 1, (2) the 
absorption coefftcient can be expressed in the 
form a, = /?(T)k,, (3) emissivities of the surfaces 
are frequency independent, (4) radiation is the 
dominant mechanism of energy transfer. All of 
these assumptions can be realized physically, but 
from a practical point of view, the principal 
limitation on the results is the requirement that 
the optical depth be less than one. The other 
approximations are adequate, however, for a 
variety of problems. 

In conclusion it should be noted that if k, is a 
complex function of frequency it may be neces- 
sary to employ a electronic computer to evaluate 
the integrals involving this function. 
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R-n a &u&C theoriquement le transport d’tnergie d’un milieu non-g& limite par deux surfaces 
plates. Le modble thtorique emploie un coefficient d’absorption dependant de la longueur d’onde et de la 
temperature au lieu de I’hypothese classique du gaz gris, L’btude tient compte de I’effet des ernissivitts 
superticielles et des conditions transitoires, L’analyse a Cte conduite sous I’hypothbe restrictive que la 
profondeur optique r,, est. inferieure a l’.unitC. Des expressions pour la distribution de temperature et le 

flux de chaleur sont present&es. Lea rtsultats montrent les insuffisances du modble du gaz gris. 

Zusamme.nfassung-Es wird eine theoretische Untersuchung durchgefuhrt ilber den Energietransport in 
einem nichtgrauen Medium, das von zwei ebenen Oberfllchen begrenzt wird. Das theoretische Model1 
weist einen spektralen und temperaturabhigigen Absorptionskoeffizienten auf, anstelle der klassischen 
Annahme von grauem Gas. Die Arbeit umfasst die Einfltisse von Oberflllchenemission und Ubergangs- 
bedingungen. Die Analyse wird unter der Einschrankung durchgefdhrt, dass die optische Tiefe rv kleiner 
also eins ist. Sowohl fiir die Temperaturverteilung als such filr den Wgrmefluss sind Formeln angegeben. 

Die Ergebnisse zeigen die Unzulanglichkeit des grauen Gasmodells. 

kiEOTa&nR-npOBeAeH0 TeopeTmecKoe uccne~oBaHue nepeHoca mepruu B Hecepoti cpege, 

OrpaHU~eHHOft AByMR nJlOCKuMU nOBepXHOCTSiMu. B TeOpeTWIeCKOtt HOAeJIu UCnOJlbayeTCR 

Koa#msneHT aBcop6suu, sasucm&i OT CneKTpa u TemepaTypsI, BMeCTO Knaccu~ecKOrO 

AOnylUeHuJi 0 CepOM raae. YWiTbIBaJlUCb BJIUHHUR UWly'4aTeJlbHO# C~OCO~HOCTU nOBepX- 

HOCTU u uepexonebze yCJIOBUR. AHanua npOBOAUJ?CH npu AonyIQeHuu, UT0 onTuqecKaf4 

rny6UHa T" MeHbIue eAuHm+x. AaIoTcR BblpaHceHuR AJIH TeMnepaTyptioro pacnpe&eneaufi 

u TelljlOBOrO IIOTOKB. nOJly=feHHble peayJIbTaTbJ AeMOHCTpUpyIOT Hey)JOBJleTBOpUTeJlbHOCTb 

UoAeesu ceporo raaa. 


